Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 194(12): 6270-6286, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35907063

RESUMO

This work presents the immobilization in situ of commercial lipase from Candida antarctica B (CALB) by the sol-gel technique (xerogel) using silica from rice husk ash (RHA) as a source of silicon. It was used the Ionic Liquid (IL) 1-octyl-3-methylimidazolium bromide (C8MI.Br) as additive. The immobilized derivatives were characterized per SEM, XRD, and per method BET. The enzymatic activity of xerogels was evaluated with different tests, these being the reactional thermal analysis, immobilization yield, and operational and storage stability. The XDR showed that the obtained xerogels have halos in the region between 15 and 35° (2θ) what characterizes it as amorphous materials. The SEM analysis of xerogel shows irregular particles with dimensions less than 20 µm. The immobilized presented an esterification activity (EA) with 263.2 and 213.8 U/g, with and without IL, respectively, higher than the free enzyme (169.6 U/g). The immobilized, with and without IL, presented a significant improvement in the activity performance in relation to free enzyme for the three reactional temperatures (40, 60, and 80 °C) evaluated. The operational stability demonstrated that is possible to use xerogel without ionic liquid for 17 recycles and 21 recycles in IL presence. This methodology allows the preparation of new highly active and selective enzyme catalysts using the rice husk ash as a source of silicon, and the ionic liquid [C8MI]Br as additive. Furthermore, the new materials can provide greater viability in the processes, ensuring longer catalyst life.


Assuntos
Líquidos Iônicos , Oryza , Lipase/metabolismo , Enzimas Imobilizadas/metabolismo , Oryza/metabolismo , Silício , Proteínas Fúngicas/metabolismo , Estabilidade Enzimática
2.
Heliyon ; 8(5): e09444, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35620618

RESUMO

In this work, new adsorbent composites from the silica precursor tetraethyl orthosilicate (TEOS) and chitosan have been successfully synthesized, denominated 20%Chi, 30%Chi and 40%Chi. The composites presented enhanced chemical and physical characteristics, with emphasis on the high surface areas between 374.94 m2/g to 886.31 m2/g. The application of the composites in the model system (TY - Tartrazine yellow dye), presented adsorption capacities dependent on the amount of chitosan in the composite (40%Chi > 30%Chi > 20%Chi). However, from the experimental data of the constituent materials, 30%Chi provided the greatest increase in the adsorption capacity in the monolayer, with values of 36%. This demonstrates that the amount of chitosan in the compound alters the arrangement of adsorption sites. The 30%Chi composite presented life cycle superior to 10 reuse cycles.

3.
Appl Biochem Biotechnol ; 194(2): 748-761, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34524635

RESUMO

MCM-48 mesoporous support was synthesized with the ionic solid 1-tetradecyl-3-methylimidazolium chloride ([C14MI]Cl) as a structure-directing agent for in situ immobilization of Candida antarctica B (CALB). The MCM-48[C14MI]Cl support showed characteristics of mesoporous material of interest, with a pore size of 20.30 and 73.41 A for the support without and with the enzyme, respectively. The elongation of the carbonic chain of the ionic solid directly influenced the increase in the specific area and pore volume of the material. In addition, the decrease in the specific area and pore volume for support with the enzyme showed the effectiveness of immobilization in situ. It was possible to obtain the ideal levels for the best activities of esterification of the enzyme with optimization of a mathematical model. The optimized variables were 0.31 g of enzyme and 3.35% of ionic solid with a maximum esterification activity of 392.92 U/g and 688% of yield. The support showed residual activity above 50% when stored under refrigeration for 75 days. At 60 and 80 °C, the enzyme immobilized on the support retained more than 80 and 40% of its residual activity, respectively. In addition, the support presented the possibility of reuse for up to 10 cycles with residual activity of approximately 50%. The support synthesized in the present study presents a great industrial opportunity for the immobilization and use of the CALB enzyme.


Assuntos
Enzimas Imobilizadas
4.
Appl Biochem Biotechnol ; 193(7): 2162-2181, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33683550

RESUMO

Sol-gel technique aiming enzymatic immobilization in situ with ionic liquids as additives is poorly studied. In this process, the addition of the enzyme is carried out in the synthesis of the support. The characteristics of ionic liquids, such as low vapor pressure, thermal stability, and non-flammability, make them strong candidates for use as immobilization additives. The objective of the present study was to immobilize the Candida antarctica B lipase by the sol-gel technique using ionic liquids as additives. The optimum points determined for ionic liquids 1-butyl-3-methylimidazolium chloride, 1-octyl-3-methylimidazolium bromide, and 1 hexadecyl-3-methylimimidazolium were 0.30, 0.27, and 0.22 g/mL of enzyme and 1.60, 1.52, and 1.52% of additive, respectively. The amount of enzyme and ionic liquids used in aerogel immobilization was the same as the optimized values in the xerogel immobilization process (for each ionic liquid). Ionic liquids proved to be good additives in the enzymatic immobilization process. Xerogel, regardless of the ionic liquid, presented a greater number of use cycles and better thermal stability compared to aerogel.


Assuntos
Basidiomycota/enzimologia , Proteínas Fúngicas/química , Líquidos Iônicos/química , Lipase/química
5.
Appl Biochem Biotechnol ; 193(4): 1072-1085, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33405010

RESUMO

MCM-41 and MCM-48 with niobium were successfully synthesized using 1-tetradecyl-3-methylimidazolium chloride ([C14MI]Cl) as a structure-directing agent. The best Si/Nb molar ratio was chosen (Si/Nb = 20) and the CALB enzyme was immobilized in situ in the synthesized Nb-MCM. SEM micrographs showed the formation of very regular spherical agglomerates with a diameter between 0.25 and 0.75 µm. The material presented a surface area of 954 and 704 m2/g and a pore volume of 0.321 and 0.286 cm3/g, for Nb-MCM-41 and Nb-MCM-48, respectively. Also, both materials showed a pore size of 2.261 nm. The number of recycles obtained for the CALB enzyme immobilized in Nb-MCM-41 and Nb-MCM-48 was 26 recycles with a residual activity of 49.62% and 16 recycles with a residual activity of 53.01%, respectively. For both materials, enzymatic activity remained stable for 5 months of storage at room temperature and refrigeration. The supports were able to catalyze the esterification reaction at 40, 60, and 80 °C, showing industrial application in reactions that require high temperatures. This methodology allows the preparation of new highly active and selective enzyme catalysts using niobium and [C14MI]Cl. Also, the new materials can provide greater viability in processes, ensuring a longer service life of catalysts. Graphical abstract.


Assuntos
Enzimas Imobilizadas/química , Lipase/química , Nióbio/química , Dióxido de Silício/química , Catálise , Esterificação , Concentração de Íons de Hidrogênio
6.
Bioprocess Biosyst Eng ; 38(8): 1569-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25894295

RESUMO

The hybrid alginate/gelatin/calcium oxalate (AGOCa) support was successfully synthesized through the biomimetic mineralization method for immobilization in situ of a pectinolytic extract from Aspergillus niger ATCC 9642 via entrapment technique. The efficiency of immobilization reached 72.7%. Sodium oxalate buffer (100 mM, pH 5.5) was selected as adjuvant of the immobilization process by allowing the formation of a calcified shell around the calcium alginate capsule, significantly increasing the stability to storage, thermal and recycling of the enzymatic immobilized pectinolytic extract. The pH and temperature for maximum activity were from 5.0 to 6.0 and 60 to 80 °C, respectively. The new hybrid support can be a potential alternative to obtain immobilized pectinases with properties for advantageous industrial applications.


Assuntos
Alginatos/química , Aspergillus niger/enzimologia , Materiais Biomiméticos/síntese química , Oxalato de Cálcio/química , Proteínas Fúngicas/química , Gelatina/química , Poligalacturonase/química , Materiais Biomiméticos/química , Enzimas Imobilizadas/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...